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Elliptic jets. Part 2. 
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The dynamics of coherent structure interactions, in particular the jet column mode 
of vortex pairing, in the near field of an elliptic jet have been investigated using hot- 
wire measurements and flow visualization. A 2 : 1 aspect-ratio jet with an initially 
laminar boundary layer and a constant momentum thickness all around the nozzle 
exit perimeter is used for this study. While detailed hot-wire measurements were 
made in air at  a Reynolds number ReDe ( = U,D,/u) = 3.2 x lo4, flow visualization 
was performed in water at  a lower ReDe = 1.7 x lo4; here U, is the exit speed and D, 
is the equivalent diameter of the nozzle exit cross-section. Excitation at  the stable 
pairing mode induced successive pairings to occur periodically at the same location, 
allowing phase-locked measurements using a local trigger sensor. Coherent structures 
were educed at different phases of pairing in the planes of both the major and minor 
axes. These are compared with corresponding data in a circular jet, educed similarly. 

Pairing interactions are found to be quite different from those in a circular jet. 
Owing to non-planar and non-uniform self-induction of elliptical vortical structures 
and the consequent effect on mutual induction, pairing of elliptic vortices in the jet 
column does not occur uniformly around the entire perimeter, unlike in a circular jet. 
Merger occurs only in the initial major-axis plane through an entanglement process, 
while in the initial minor-axis plane, the trailing vortex rushes through the leading 
vortex without pairing and then breaks down violently. These motions produce 
considerably greater entrainment and mixing than in circular or plane jets. From 
distributions of dynamical properties over the extent of coherent structures, the 
production mechanism is explained in terms of the longitudinal vortices (or ribs) 
connecting the elliptic structures. Time-average measures and their modification by 
controlled excitation are also discussed in terms of coherent structure dynamics. A 
significant space in this paper is devoted to documenting phase-dependent and time- 
average flow measures ; these new results should serve as target data for numerical 
simulations. Further details are given in Husain (1984). 

1. Introduction 
Pairing is a dynamically significant interaction of large-scale vortical structures in 

shear layers, jets and other turbulent shear flows. Large-scale engulfment, and 
enhanced mixing and transport of momentum (both co- and counter-gradient) can 
occur during pairing (Winant & Browand 1974; Hussain 1981 ; Laufer 1983; Ho & 
Huerre 1984). In many flow situations, such as impinging jets, turbulent boundary 
layers and wall jets, large-scale organized structures can induce flow separation. 
Pairing of the structures produces higher circulation structures, which in turn can 
significantly augment separation and mixing. Thus control of pairing may be a 
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method of controlling separation and mixing. While mixing is not necessarily caused 
only by pairing, pairing following the formation of ribs can cause mixing of core fluid 
by folding and spanwise stretching (and subsequent possible reconnection within 
rolls). Pairing affects vortex core deformation, fine-scale mixing and helicity 
generation, and may involve significant vortex reconnection activity. Pairing also 
contributes to a counter-gradient transport of momentum and is an additional cause 
for the breakdown of coherent structures (and generation of fine-scale turbulence), as 
shown by Hussain & Zaman (1980) in their study of a circular-jet near field. Ho & 
Huang (1982), among many other researchers, have discussed pairing in a plane 
mixing layer. Pairing can also be important in aerodynamic noise generation. Laufer 
(1974) first hypothesized vortex pairing to be a primary source of jet noise, a 
mechanism that found support from Ffowcs-Williams & Kempton (1978) and 
Crighton (1981). Further, Kibens (1980) suggested that the puzzling phenomenon of 
broadband noise amplification, found by Moore (1977) and Bechert & Pfizenmaier 
(1975) in excited jets, was due to spatial jitter in pairing events. Following vortex 
sound theory (Miihring 1978; Kambe 1984; Obermeier 1985), which relates the far- 
field pressure to the third time derivative of the source vorticity moment, it appears 
that the details of the vorticity field and its spatiotemporal evolution during pairing 
(which involves rapid acceleration and deceleration of vortical fluids) are crucial in 
understanding and controlling aerodynamic noise generation. 

I n  this paper, we address the dynamics of coherent structures during pairing 
for a limited downstream distance defined by 1 < x / D ,  < 5 .  In  this region, the 
azimuthal curvature of the jet is an important parameter in its instability 
mechanism. This is unlike the situation very close to the exit plane where the 
momentum thickness 0 < D,; in that  case the instability mode scales with the exit 
momentum thickness 0,. In  other words, the development of the short waves close 
to the jet exit plane are insensitive to the jet geometry, while the long waves farther 
downstream are dependent on the jet dimension (Batchelor & Gill 1962, p. 538). We 
differentiate the instabilities in these two regions and designate these as the ‘shear 
layer mode ’ and the ‘jet column mode ’ instabilities (Zaman & Hussain 1980 ; Laufer 
& Zhang 1983). Petersen & Samet (1988) employed linear analysis by taking into 
account the radial dependence, but found no difference between the shear layer and 
jet column instability modes. However, there is indeed a difference between the 
instabilities of short-wave modes and longer modes whose wavelengths are 
comparable to the jet diameter (see Bachelor & Gill 1962). 

The instability leading to pairing and the topological details of coherent structures 
during pairing arc not only of fundamental concern in turbulence physics, but also 
of crucial importance for effective turbulence management (both enhancement and 
suppression of turbulence phenomena such as transport of heat, mass and 
momentum, combustion, drag and aerodynamic noise). Additionally, the details of 
structure evolution for well-defined initial and boundary conditions can serve as 
target data for validation of modelled and direct numerical simulations. 

The instability mechanism leading to pairing (known as subharmonic resonance) 
was first analysed by Kelly (1967), who used a weakly nonlinear analysis for a 
temporally growing shear layer. More recently, Monkewitz (1988) modified the 
theory for a spatially developing shear layer. His analysis is for a small region near 
the saturation location of the fundamental, but does not address the saturation of the 
subharmonic (i.e. occurrence of pairing). Numerically, Acton (1976), Patnaik, 
Sherman & Corcos (1976), Riley & Metcalfe (1980) and Corcos & Sherman (1984) 
have studied temporally evolving shear layers, while Ashurst (1979), Mansour & Barr 
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(1985), Grinstein, Hussain & Oran (1989) and Mansour, Hussain & Buell(l988) have 
explored pairing in spatially developing mixing layers. 

No corresponding theoretical study has addressed pairing in the jet column where 
vortices are fat and their azimuthal curvature is important. An energy-integral 
technique was used by Mankbadi (1985) to study the interactions between a 
fundamental and its subharmonic in a circular jet. Raman & Rice (1989) studied 
subharmonic resonance in the circular jet column using two-frequency excitation 
(f and g). Similar to what was found in the shear-layer domain, they observed 
dependence of the growth of the subharmonic on its initial phase and on the critical 
fundamental amplitude. Cohen & Wygnanski (1987) studied the interaction of two 
waves of different azimuthal modes in circular jets. They observed the resonant 
growth of a subharmonic wave whose azimuthal mode number is equal to the 
difference between the imposed numbers of modes of the fundamental and the 
subharmonic. 

Experimentally, almost everyone studying shear layers and jets has observed 
pairing (notably Sat0 1959; Wille 1963; Browand 1966; Winant & Browand 1974; 
Brown & Roshko 1974). Most experimental investigations of vortex pairing have 
been based on either flow visualization or spectra of the longitudinal velocity ; there 
have been very few quantitative studies of coherent structure dynamics associated 
with pairing. This phenomenon has been of considerable interest in our laboratory - 
in particular, the pairing dynamics of coherent structures in an axisymmetric jet 
(Hussain & Zaman 1980) and the role of pairing in jet noise (Bridges & Hussain 1987). 

In part 1 of this paper (Hussain & Husain 1989, referenced herein as Part l),  we 
have discussed the out-of-plane deformation of elliptic vortices due to self-induction 
and the parameters which govern pairing in elliptic jets. In this part we focus on the 
details of the pairing mechanism of non-planar vortical structures and its effects on 
various turbulence measures ; namely, coherent velocities, incoherent turbulence 
intensities, incoherent and coherent Reynolds stresses, turbulence production, mass 
entrainment, etc. The dynamics of coherent structure interaction are then 
examined from the educed coherent vorticity field. Significant effects are highlighted 
by comparing the results of the elliptic jet with those of a circular jet. We then 
address details of coherent production of incoherent turbulence, and discuss the role 
of ribs in the production mechanism. Finally, time-average measures, including their 
modification under the stable pairing mode of excitation, are discussed in terms of 
coherent structure dynamics. Further details of apparatus, procedure and results 
were documented by Husain (1984). 

2. Eduction technique 
Velocity data from a flow domain may suggest large-scale organized events, only 

when the latter are dominant. Large-scale organization, however, can be buried 
under higher-amplitude, random turbulence; one must find ways to filter out the 
random field and focus on the underlying organized events. Of course, one must also 
consider the coupling between the two fields. By coherent structure we mean the 
ensemble average of properly aligned, organized vortical motions of the same mode 
(i.e. the same size, shape, strength and orientation) at  a particular phase of their 
evolution. We use phase-average to denote this phase-aligned ensemble average. 
Phase averages at  different phases provide the time evolution of coherent structures. 
Using such a phase averaging procedure, incoherent turbulence can be separated 
from the coherent part without any ambiguity, and the geometry and dynamics of 
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coherent structures and their coupling with incoherent turbulence can be studied 
quantitatively (Hussain 1981). 

Several approaches have been used to educe coherent structures. An ideal 
approach would be to obtain three-dimensional vorticity fields as a function of time 
and apply our eduction scheme to these data. Owing to the limitations of the current 
measurement techniques, studies of structures have been limited so far to detection 
based on spanwise vorticity in spanwise planes, rather than the full three-dimensional 
details of flow ; also, the measurements unavoidably suffer from limited spatial 
resolution. 

2.1. Present method 
Pairing in an unexcited jet occurs somewhat randomly in space and time. Eduction 
of naturally occurring pairing events using a single-point detection scheme (similar 
to that used by Browand & Weidman 1976; Bruun 1977; Yule 1978; and Zaman & 
Hussain 1984) will suffer from smearing because the eduction scheme cannot 
differentiate between structures of different sizes, shapes and strengths, and their 
transverse locations. A multi-probe data acquisition technique with proper 
conditioning of the measurement signals reduces smearing (Tso 1983 ; Hayakawa & 
Hussain 1985, 1987) but requires the use of Taylor’s hypothesis, which introduces 
substantial error in situations where structures undergo interactions such as pairing 
or tearing (Zaman & Hussain 1981). Furthermore, a rake is ineffective when 
structures are small because of the unavoidably coarse transverse spatial resolution 
(due to x -wire probe separation). To study the pairing dynamics with currently 
available technology, particularly in the near field of a jet, the small thickness of the 
shear layer forces the use of phase-locked measurements with a single probe (without 
invoking Taylor’s hypothesis). 

A periodic perturbation greatly facilitates eduction by temporally stabilizing 
structure formation and evolutionary stages. This substantially reduces the variance 
in structure size, shape, orientation and strength, and minimizes smearing in the 
educed structures. Additionally, the (nearly periodic) structures are detected using 
a local trigger probe, allowing more accurate alignment of detected events. Further 
improvement can be achieved by optimizing the alignment through cross-correlation, 
but is not warranted in the early stages of the evolution. 

Inevitably, questions arise concerning the relevance of excited structures to 
unexcited ones. Structure formation and pairing in an unexcited jet are induced by 
uncontrolled ambient disturbances and feedback from downstream structures. 
Controlled excitation can overshadow these disturbances and remove the associated 
phase jitter, thus allowing phase-locked measurements with a single sensor. One 
would expect that such excitation will have significant effects on the time-average 
measures because of stabilized periodic pairing in an excited jet as opposed to jitter 
in pairing in an unexcited jet. However, when pairing occurs in an unexcited jet, we 
expect that the instantaneous coherent structure evolution should not be drastically 
different from that during pairing in an excited jet. It was argued and later proven 
that small to moderate periodic excitations can pace the initiation of structures 
without noticeably altering the structures (Hussain & Zaman 1980). 

This method offers spatial resolution limited only by the probe size - particularly 
desirable in situations where the flow domain is too small for a rake of X-wires. 
However, we reiterate that while excitation is effective in reducing initiation jitter, 
it cannot eliminate evolutionary jitter (Hussain 1986). There are, therefore, 
limitations as to how far downstream the single-sensor technique can be used because 
of increasing jitter with increasing x. Considering spatial resolution and the need for 
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Taylor’s hypothesis when a rake is used, the phase-locked measurement technique 
with a single sensor was considered the best compromise for the present study. 

3. Experimental procedure 
The jet facilities (air for hot-wire measurements and water for flow visualization) 

used in the present study have been described in Part 1. The probe configuration and 
the coordinate system are shown in figure 1 (a,  b ) .  Because the elliptic jet cross- 
section switches axes, we need to specify reference planes. We use ‘major plane’ and 
‘ minor plane ’ to denote the reference planes defined at the nozzle exit - they are the 
planes passing through the exit major axis and minor axis respectively. In this study 
we used a 2 : 1 aspect-ratio elliptic jet of equivalent diameter D, = 5.08 cm with an 
initially laminar boundary layer having a constant momentum thickness all around 
the nozzle exit perimeter (nozzle N1 in Part 1). Equivalent diameter is defined as 
D, = 2(ab)a, where a and b are the semi-axes a t  the nozzle exit. For the data in the 
present paper, the jet exit speed was 9.5 m s-l corresponding to ReDe = 3.2 x lo4. 
The reason for using the unusual situation of a constant momentum thickness is 
explained in Part 1, which also emphasizes the role of initial conditions (i.e. jet exit 
flow) and documents the quality of the flow, including longitudinal mean and r.m.9. 
fluctuation velocity profiles of the exit boundary layer, but at a higher Reynolds 
number ofReDe = lo5. For the present study, the exit boundary-layer characteristics 
were rechecked in both the major and minor planes of the elliptic cross-section. 
Boundary-layer profiles were laminar, had a low fluctuation level and agreed very 
well with the Blasius profile, having shape factors close to 2.59; the exit momentum 
thickness 0, was 0.23 mm, thus assuring a top-hat profile with elliptic support. 
Stable pairing was induced via sinusoidal bulk forcing at an exit plane excitation 
level (uL/U,) of 2.5 % using acoustically driven longitudinal resonance of the 
settling chamber cavity (see Part 1). The excitation frequency and amplitude level, 
and flow velocity were chosen carefully so that the centreline velocity signals were 
devoid of any modulations near the location of pairing. Such a requirement is 
necessary for structure eduction using the present phase-locked measurement 
technique. Velocity signals began modulating (i.e. detuning) as the excitation 
amplitude was lowered below about 2%, signifying that the pairing location then 
was not fixed in space. 

Flow visualization studies were made in a submerged water jet facility using a 
laser-induced fluorescent dye (uranamine). Controlled perturbations were introduced 
by an electromagnetic shaker. The sinusoidal motion of the shaker actuated a piston 
in a cylinder containing water. The cylinder is connected to the outer perimeter of 
the shear-layer excitation chamber through four tubes (for details, see Part 1). With 
this excitation system, the amplitude of excitation dropped rapidly a t  frequencies 
higher than about 8 Hz because of the large inertia of the oscillating water column 
in the excitation system. Thus, in order to obtain St,, = 0.85 with a reasonable 
amplitude, we had to choose a frequency of 5.76 Hz, resulting in a lower Re = 
1.7 x lo4 (U,  = 0.344 m s-l) than the Re used in the air jet. 

3.1. Response to excitation 

In  Part 1 we showed that coherent structures in elliptic jets with moderate aspect 
ratios are characterized by the jet column mode of stable pairing that occurs a t  
StD, ( = fDe/Ue) = 0.85; here f is the excitation frequency. As mentioned above, 
experiments in Part 1 were done at  ReDe = lo5; in the present study, however, 
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FIGURE 1 .  ( a )  Schematic of the flow facility and measurement scheme. ( b )  Coordinate system. 

coherent structures were educed a t  the much lower ReDe = 3.2 x lo4 for better spatial 
resolution because a t  this lower speed the structures are larger. The jet column mode 
of stable pairing was again checked a t  this ReDe and found to occur optimally a t  
St,, = 0.85, support.ing our claim that this mode is fairly independent ofReDe (at least 
within the ReDe range we have studied). 

Figure 2 (a) shows the evolution of the jet centreline u-spectrum under excitation 
a t  St,, = 0.85; all the traces have the same logarithmic ordinate and linear abscissa 
scales. The spectra. averaged over 128 realizations with a frequency resolution of 
0.3% of the maximum, were obtained with a real-time spectrum analyser 
(Spectrascope SD335). As the streamwise distance increases, a subharmonic 
component (associated with the first pairing) appears, overtakes the fundamental at 
x/De x 0.5, and grows to  a maximum a t  x / D ,  x 2.0. Note that the subharmonic 
(associated with the larger, paired structures) persists longer than the fundamental, 
as expected. Owing to nonlinear interactions, higher harmonics of the subharmonic 
and of the fundamental first grow and then decay until they become submerged in 
the evolving background turbulence (for x /D,  > 6) ; beyond this length the spectrum 
is fully developed and devoid of any noticeable peak. This is by no means an 
indication that turbulence is fine-grained beyond x /D,  x 6 ; organized structures are 
in a state of large-scale breakdown ; they lose their phase coherence and their random 
phase leaves no disccrnible spectral footprint. There is no second subharmonic (if) 
component, suggesting that only one pairing occurs before breakdown. 

Since coherent structures were to be educed by phase-locked measurement, the 
centreline longitudinal velocity signal u,(t), which was used as the trigger signal, was 
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FIQURE 2. (a) Evolution of u-spectrum along the jet centreline under excitation at St,, = 0.85. 
(b) Traces of u(t) signal along the jet centreline under excitation at St,, = 0.85. 

examined regarding its variation in amplitude, jitter in time and superimposed fine- 
scale features. Figure 2(b) shows one such set of u,(t) as a function of x .  The traces 
also show the gradual development of the subharmonic frequency followed by its 
saturation, harmonic growth and transition to turbulence. Note that at x/D,  = 3.25, 
there is laminar flow on the jet centreline between successive turbulent vortical 
structures. The signal is precisely sinusoidal a t  the exit but takes a cusp-like shape 
(around x/D,  x 2) after the frequency is halved. This corresponds to the situation 
where there is intense velocity oscillation on the jet centreline associated with 
localized periodic pairing. The velocity signal shows a decrease in amplitude from the 
exit value to a minimum (around x/De x 0.25) before its growth, mostly due to the 
subharmonic. Such suppression has also been observed in our excited circular jet 
studies as explained previously. 

The periodic signal up to x/De = 2.5 (also evident from the sharp spectral peak) 
indicates periodic passage of structures of equal strengths. This is important for 
phase-locked measurement because this technique assumes that all the structures are 
of the same kind, although exact periodicity of the signal is not required. 

3.2. Phase averaging 
Eduction involves the separation of coherent and incoherent components ( g )  and gr 
of any field quantity g(x, t )  obtained by phase-averaging g at a particular phase. The 
coherent part is the ensemble average of the phase-aligned events at a particular 
phase (i.e. phase average). Interpretation of the decomposition of coherent and 
incoherent fields (double and triple decompositions) has been discussed at  length 
previously (Hussein 1981). Note that most of the important coherent structure 
properties (e.g. coherent vorticity, coherent turbulence production, incoherent 
normal and shear stresses) are independent of the choice of a steady reference frame. 
However, streamlines and velocity vector patterns are not Galilean invariant, and 
require careful interpretation (discussed further in 4.1). 

Time- and phase-average field measurements were made in both the major and 
minor planes. Data presented in this paper cover spatial distributions of the 

15-2 
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following time- and phase-average quantities : mean velocities U and V ,  turbulence 
intensities u' and v'; Reynolds stress m; time-average shear, normal and total 
productions P,, P, and P ;  phase-average velocities (u) and (v); spanwise coherent 
vorticity ( w , )  ; incoherent turbulence intensities (u,"); and (v,2)&; incoherent and 
coherent Reynolds stresses (u,  v,) and ( u p  up) = ( (( u )  - U )  ( (v) - V ) )  = ( u v )  - 
(u,v , ) ;  coherent shear, normal and total productions (P,), (P,) and ( P ) .  The 
significance of these measures regarding coherent structure dynamics was illustrated 
in Hussain (1981, 1983). 

3.3. Data acquisition 

For phase-average measures, the reference probe was located on the jet centreline at 
x/D, = 1.8, where the v component of the u-signal was the strongest, thus 
minimizing the effect of jitter on the educed structures. The u-signal there was 
bandpass-filtered at v and then used as the reference signal to the triggering device. 
The output signal from the triggering device flagged the computer (when the signal 
crossed a threshold) to sample data from an x -wire at that instant. The adjustable 
dwell time of the triggering circuit allowed the delay time t (between the instants of 
structure detection and signal sampling) to be set such that the structure would be 
captured (hence educed) at the desired phase. 

The phases for eduction were selected after examining the flow by visualization. 
We noted that complete merger of vortices occurred in the major plane, but no 
merger took place in the minor plane. To examine the details, one full cycle of the 
pairing process in the minor plane was divided into five phases (I to V). The 
structures were also educed in the major plane at exactly the same phases. 

At  each phase, measurements were carried out at a large number of spatial points 
in both major and minor planes. The number of grids and their spacing were 
judiciously varied in the streamwise and transverse directions with a finer spacing in 
the vortex core region. Thirty grids were used in the streamwise direction, while the 
number of grids in the transverse direction varied between 20 and 30. For a given 
location (x, y )  of the x -wire, an average over a large ensemble (typically 2000 to 3000 
samples, which gave convergent ( u )  and (v) values within 5 %  scatter) of data 
obtained at successive trigger points (i.e. at identical locations of successive 
structures) gave the phase-average at that point. This process was repeated after 
relocating the measurement probe, but keeping the trigger conditions unchanged. 
Results are presented as contour plots. Positive-valued contours are denoted by solid 
lines and negative-valued ones by dashed lines. 

4. Results and discussion 
4.1 Coherent vorticity 

Figure 3 (a)  shows contours of coherent azimuthal vorticity <we),  non-dimensionalized 
by the excitation frequency f; the five sequential phases (I to V) during the pairing 
process are shown in both major and minor planes. The trigger times were chosen so 
that pairing of vortices is captured at different relative inclinations. For example, the 
line connecting the two vortices in the minor plane would be inclined at an angle 
B x 45' with the x-axis at phase I. At phases I1 to V, these angles were to be 
approximately 90°, 120°, 127' and 155' respectively. These angles could not be 
preselected exactly, as they were apparent only after eduction. In the following 
discussion, we will refer to coherent vorticity simply as vorticity. 

FIQURE 3. Contours of coherent azimuthal vorticity ( w , ) / f  at various phases during pairing: 
(a) elliptic jet; ( b )  circular jet. 
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To compare pairing in elliptic and circular jets, coherent structures in a circular jet 
were also educed under the same conditions (e.g. same nozzle exit area, exit velocity, 
excitation frequency, level of excitation and phases) using the same facility, but with 
the elliptic nozzle replaced by a circular nozzle. Due care was taken to check the 
initial (laminar boundary layer) condition (mean and fluctuation level profiles) and 
axisymmetry of the flow. Structures were educed at three phases for 0 values of 50°, 
go", and 130". These three phases correspond approximately to phases I, I1 and I V  
of the elliptic jet. Contours of ( w , ) / f  for the circular jet are shown in figure 3 ( b ) .  

4.1.1. Vorticity contours 
In circular jetas, self-induction is constant all around the perimeter and pairing 

occurs nearly uniformly around the perimeter (Hussain & Zaman 1980). In an elliptic 
jet, however, interaction is quite different in the major and minor planes. Merger of 
vortices occurs in the major plane (phase 111), while in the minor plane, the trailing 
vortex, instead of pairing, rushes through the leading one by mutual induction and 
subsequently breaks down. Contours of (w , )  in the minor plane show the distinct 
identities of the two vortices even up to phase V. A third region of vorticity 
concentration, seen in the upper right-hand corner at phases IV  and V (in the minor 
plane), is the remnant of the leading vortex of the previous (downstream) vortex 
pair. There is no remnant of the trailing vortex of the previous pair as i t  has already 
advected beyond the measurement region. The broken-down structure farther 
downstream, if captured using the present measurement technique, would suffer 
from significant smearing ; therefore the structures were not educed farther 
downstream. 

The low-level vorticity contour ( ( w , ) / f  = 0.5) in the major plane shows a valley on 
the low-speed side (figure 3a) .  Owing to self-induction, the vortex cores in the major 
plane move towards the jet axis, shedding low-vorticity fluid in their wakes on the 
low-speed side ; this is what produces the valley. In  this region the ambient potential 
fluid is engulfed and subsequently imparted vorticity by diffusion (compare phases 
IV and V). This region, where the vorticity has a local minimum, is shown as a 
hatched area. Such discard of turbulent vortical fluid in the wake of vortical 
structures is not unlike that observed by Maxworthy (1974). Note that all the 
vorticity contours show a mild dip on the low-speed side of the minor plane. 
This is a result of the combined effects of flow reversal and the arrival jitter of the 
leading vortex in the measurement region. Because of the inability of the hot wire to 
detect flow reversal, as well as owing to increased jitter, the measurements on the 
low-speed side of the outer structure are contaminated (explained by Hussain & 
Zaman 1980). 

4.1.2. Peak vorticity 
The evolution of vorticity peaks during the interaction process is shown in figure 

4(a, b)  for both elliptic and circular jets. Since we have educed structures in the 
circular jet for only three phases, the peak vorticity curve is extended up to x / D  = 
4 using data from Hussain & Zaman (1980). In  the minor plane, the vorticity of the 
leading structure diffuses more slowly than that of the trailing vortex. Between 
phases I and V, the peak vorticity (w,) , / f  of the leading structure is reduced from 
6 to 4, while that of the trailing structure is reduced quite significantly - from 10 to 2. 
Between phases I and 111, as the trailing vortex rushes inside the leading one, the 
former's <w,), is reduced a t  a high rate as its perimeter is decreased. (This decrease 
in the perimeter length may not be simple as azimuthal wrinkles are likely to occur.) 

. 
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FIQURE 4. Distributions of vorticity peaks during pairing in elliptic and circular jets: (a) major 
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0 

Later, ( w ) ,  is further reduced by rapid diffusion because of turbulent breakdown of 
the trailing vortex. 

The elliptic vortices undergo deformation due to self-induction, and the leading 
vortex switches axes prior to the pairing interaction. Such deformation increases 
vorticity due to stretching ; consequently, the diffusion of vorticity, mostly due to 
incoherent turbulence (see §4.3), is also increased. At phase 11, the circumferential 
length of the leading vortex is increased by about 30% (based on the local 
perimeter), indicating that the leading vortex has undergone substantial stretching. 
Measurements show that in the minor plane, the leading vortex has higher levels of 
(u:); and (,:)a than the trailing vortex (discussed in $4.3). Thus an increase in peak 
coherent vorticity due to stretching balances an opposing decrease due to turbulent 
diffusion, keeping the peak vorticity nearly constant up to phase IV. In the major 
plane, the decrease in peak vorticity is less dramatic. Since in this plane vortices 
converge towards the jet axis, there is no significant stretching. It appears that a 
balance between an increase in coherent vorticity due to merger of vortices and a 
decrease due to turbulent diffusion prevents a large decrease in the peak vorticity up 
to phase IV. 

On the major-axis side, pairing does not occur through the leapfrog motion of 
planar vortices found in a circular jet. Instead, merger occurs over a short length on 
the major axis sides through an entanglement process (discussed in $84.1.4 and 
4.1.5). A comparison between structure contours in the circular and elliptic jets is 
meaningful only in the minor plane, because the interactions in this plane up to phase 
IV appear to be similar. In the minor plane, (w,), of the trailing vortex is decreased 
at a much higher rate than in the circular jet, while (w,), of the leading vortex is 
nearly identical to that in the circular jet up to phase 111. Farther downstream, 
structures in the circular jet undergo pairing, while the trailing vortex in the elliptic 
jet breaks down, resulting in a large decrease in peak vorticity. 

4.1.3. Vorticity diffusion and mixing 
Detailed mechanisms of mass entrainment and fine-scale mixing are quite complex 

and their direct measurements are difficult. Integral measures, such as increase in jet 
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FIQURE 5. Areas enclosed by contours of various levels of vorticity (o,)/f: (a) major plane; ( b )  
minor plane; (c) circular jet. 0, phase I ;  0,  phase 11; V, phase 111; A, phase IV; 0, phase V. 
(d )  Area enclosed by the vorticity level (w , ) / f  = 1. 0 ,  major plane; ., minor plane; 0, circular 
jet ; , circular jet data of Hussain & Zaman (1980). 

width, mass flux and domains of high level of turbulence intensity, have been used 
to estimate mass entrainment and mixing in the time-mean sense. Educed coherent 
structures allow a closer examination of mechanisms of mass entrainment and 
vorticity diffusion, and provide an estimate of the amount of mixing which occurs 
during their evolution. Since the elliptic and circular jets are studied under identical 
initial conditions with the same detection scheme, we can compare the effects of 
geometry modification alone on various structure properties. Here we compare the 
areas enclosed by various levels of vorticity contours for elliptic and circular jets. 
Such areas (ranging from ( w , ) / f  = 1 to the maximum level a t  each phase) in the 
major and minor planes of the elliptic jet are shown in figure 5(a ,  b)  for the five 
phases. The corresponding circular jet data are shown in figure 5 (c) for phases I, I1 
and IV. I n  the circular jet, areas enclosed by a particular vorticity contour level show 
very little change from phases I to IV. In the elliptic jet, the decrease in (w,) ,  and 
in the areas enclosed by (w , ) / f  > 1.5 contours, and the increase in the areas for 
( w , ) / f  < 1.0 are quite significant. Note that both the decrease in the peak value of 
(w , )  and the increase in the (w , ) / f  = 1 contour area are higher in the minor plane. 

The variations of the area enclosed by the vorticity level ( w , ) / f  = 1 are shown in 
figure 5(d). At each phase, the x/D location denotes the axial distance of the mid- 
point of the two interacting structures from the jet exit plane. For comparison, 
circular-jet data from Hussain & Zaman (1980) are also included, which show good 
agreement with the present circular jet data, establishing the reliability of the two 
independent measurements. These curves clearly show that the structure boundary 
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defined by a low-level vorticity contour (e.g. ( w , ) / f  = 1) increases at  a much higher 
rate in the elliptic jet than in the circular jet, especially during phases I to 111. Note 
that this area in the minor plane is higher by about 20 YO at phase I and 50 % at phase 
I V  than for the circular jet. This indicates that more (non-vortical) ambient fluid is 
engulfed in the elliptic jet than in the circular jet; that is, mixing in elliptic jets is 
more rapid than in circular jets. The cross-sections of elliptic and circular jets 
reported in Part 1 are consistent with these observations. 

4.1.4. Vortex trajectories 
The trajectories of the vortex pairs during interaction are shown in figure 6(a ) .  

Solid lines are derived from the locations of peak (w,)  in figure 3(a ) .  Dashed lines 
(nearer to the exit plane) are inferred from the U/U,  x 0.5 line. Dotted lines denote 
trajectories for the circular jet. 

The lip lines (i.e. constant radius lines passing through the nozzle lip) along the 
major and minor planes for the nozzle used in this study (2: 1 aspect ratio and D ,  = 
5.08 cm) are 0.7070, and 0.3530, away from the jet centreline (these are the values 
of semi-axes a and b ) .  In the major plane, the transverse locations of both vortex 
centres (i.e. locations of peak vorticity) at phase I are equal, being approximately 
0.6D, ; the vortices in the major plane have moved transversely towards the jet axis 
by self-induction. In the minor plane, the transverse distances are approximately 
0.650,  and 0.350,  for the leading and trailing vortices respectively, indicating that 
the leading vortex has moved a considerable distance away from the jet axis. A 
comparison of transverse locations of vortex centres in both planes a t  phase I shows 
that the leading vortex has already switched axes, while the trailing-vortex aspect 
ratio has decreased only slightly. 

In the minor plane, the leading vortex moves away from the jet axis rapidly, while 
the trailing vortex moves almost parallel to the jet axis. That is, the distance 
between the two neighbouring vortices increases rapidly and monotonically, unlike 
in the circular jet. Note that at phase IV, the distance (x  0.40,) between the two 
vortices in the elliptic jet is about twice the maximum (x0.25D) between the 
vortices in the circular jet (see figure 3a, b ) .  It appears that this larger distance 
between the two interacting vortices prevents them from pairing in the minor plane. 
In the major plane, however, both vortices move towards the jet axis by self- 
induction ; as the two vortices get close they undergo pairing by mutual induction at 
x / D ,  x 2.2. 

To explain the differences between vortex interaction in the major and minor 
planes, let us consider the motions of two adjacent elliptic vortices due to self- and 
mutual inductions. In figure 6 ( b ,  c ) ,  the directions of self- and mutual inductions are 
denoted qualitatively by vectors ‘S’ and ‘My respectively. In the minor plane (figure 
6 b ) ,  since the resultant of both ‘S’ and ‘My of the leading vortex is in a direction 
away from the jet axis, the leading vortex moves away from the trailing vortex (thus 
increasing the distance between the two). This large separation prohibits merger in 
this plane. In the major plane (figure 6c) ,  the leading vortex has already moved 
towards the jet axis by self-induction before the trailing vortex is formed. After the 
formation of the trailing vortex, the resultant of ‘S’ and ‘M’ pushes it toward the jet 
axis, and the two vortices get closer, allowing merger to occur. Note that complete 
merger in the major plane occurs within the short distance of about x /D,  = 0.2 (see 
phases I1 and I11 of figure 3a) ,  while leapfrog motion in the circular jet continues 
over a distance of about x / D  = 2 before the completion of merger. 
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FIGURE 6. (a) Trajectories of structures during pairing in elliptic and circular jets: 0, leading 
vortex (minor plane); 0 ,  trailing vortex (minor plane); V, leading vortex (major plane); A, 
trailing vortex (major plane) ; . ...., circular jet. Schematics showing motions of elliptic structures 
due to self- and mutual inductions: ( b )  minor plane; (c) major plane. 

4.1.5. Flow visualization 
The pairing mechanism was further studied by flow visualization. A sheet of laser 

light was used to examine cross-sections of the structures in both the major and 
minor planes (see Part 1 for details of the visualization technique). Digitally 
enhanced video frames are shown in figure 7 ( a )  in the form of isointensity contours 
of fluorescent dye. I n  this figure, the high-speed side of the shear layer is below it. 
These pictures support the interaction process revealed by the measured vorticity 
contours : complet,e merger of vortices in the major plane, but no such merger in the 
minor plane. 

In the minor plane, as the interaction proceeds, the trailing vortex rushes inside 
the leading one and breaks down violently soon after it emerges downstream. In 
frames 6 to  8, isolated, fragmented contours show the broken-down parts of the 
trailing vortex. This process of violent breakdown appears to enhance small-scale 
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FIGURE 7 (u, b ) .  For caption see page 455. 
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FIGURE 7 (c). For captions see facing page. 
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FIQURE 7. (a) Sequence of flow visualization pictures in the major and minor planes during pairing, 
presented in the form of isointensity contours. ( b )  Schematic of the vortex evolution process during 
pairing. (c) Flow visualization pictures taken simultaneously in the major and minor planes during 
pairing shown along with illustrative sketches. Schematics of the entanglement of vortices in : (d) 
plane jet; ( e )  circular jet. 

mixing in elliptic jets. In reference to our longstanding warning about the limitations 
of flow visualization in understanding structure dynamics in turbulent flows, a 
question obviously arises as to whether these isointensity contours, which show dye 
concentrations, represent vorticity concentrations. Since these events occur near the 
dye injection location (between 20, and 30,) and within a short travel time, the 
concentrations of vorticity and dye cannot be noticeably different ; of course, farther 
downstream, the correspondence weakens even at  unity Schmidt number because of 
three-dimensional motions. 

Although the vorticity contours in the major plane exhibit merger, similar to that 
exhibited in a circular jet, the pairing process in an elliptic jet is morphologically 
different from that in a circular jet. This difference was revealed by flow visualization 
using floodlighting, which enabled us to observe the interaction process sim- 
ultaneously over the entire perimeter. In a circular jet the pairing interaction takes 
place through a leapfrog motion of two vortices along the entire perimeter wherein 
the vortex lines remain locally parallel (see also Reynolds & Bouchard 1981). In an 
elliptic jet, the two neighbouring vortices come close to each other only in the major 
plane and undergo pairing along a small segment there. This starts as an entanglement 
rather than leapfrogging, although the entangled vortices soon become a single 
vortex through diffusion. As an aid to the description of pairing, inferred from data 
(figure 3a) and observed through visualization, our perception of the pairing process 
is shown schematically in figure 7 (b ) .  A sequence of flow visualization pictures, taken 
simultaneously from the major- and minor-axis sides, is shown in figure 7 ( c ) .  For 
clarity, perspective views are also drawn schematically below the flow visualization 
pictures. These visualization pictures, though they clearly show only local merger, 
unfortunately cannot reveal the entanglement process. 

Flow visualization studies in plane and circular jets have also revealed similar 
mergers of vortices through entanglement, shown schematically in figure 7 ( d ,  e ) .  
Merger through entanglement was also observed by Clark & Kit (1980) in plane jets. 
It appears that non-uniformity of initial conditions or spanwise perturbations 
produces local curvature in the vortices of a plane jet, leading to entanglement. In 
a circular jet, we have observed axisymmetric vortices being tilted alternately 
forward and backward, presumably by a spiral instability mode, resulting in the 
entanglement interaction over small sectors. Merger through entanglement may 
indeed be a common phenomenon in many situations (see also Chandrasuda et al. 
1978); elliptic jets can clearly allow us to examine this mode of vortex merger in 
detail. 
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FIQURE 8. Contours of phase-average longitudinal velocity (u>/U,. 

4.2. Phase-average velocities 
Measured property contours for the five selected phases are voluminous; in order to 
save space we discuss hereafter data contours only for phases I, I1 and IV. In  all the 
figures, vortex centres are identified by a '+ '  for spatial reference. In the following, 
we present data primarily for documentation, and comment on them whenever 
possible. 

4.2.1. Longitudinal and transverse velocities 
Phase-average longitudinal and transverse velocity contours <u)/Ue and ( v ) /Ue  

are shown in figures 8 and 9 respectively. The distributions of <u) and ( v )  can be 
qualitatively explained by decomposing the flow field into motions produced by self- 
induction (curvature-dependent induction) and mutual induction (by all other 
vortices), and by the rotational flow field of the vortex itself, which we will call 
' induced ' and 'rotational ' motions. 

Contours of <u) show only positive regions because the structures advect in the 
streamwise direction a t  a speed higher than the opposing motion due to rotation on 
the low-speed side. Obviously, a hot-wire cannot differentiate the direction of <u), 
but if flow reversal occurred, contours of ( u )  would show a peak region on the low- 
speed side. Near the jet axis, all motions are in the flow direction, producing a peak 
in ( u )  distributions which is higher than the exit velocity. The 'S-shaped' contour 
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FIGURE 9. Contours of phase-average transverse velocity (v>lU,. 
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lines in phase I1 in the minor plane are due to the opposing rotational motion 
between the structures: (u(y)) decreases away from the inner vortex and then 
increases near the core region of the outer vortex. 

Associated with each vortex is a positive (v) region at  the front (downstream) and 
a negative region at  the back (upstream) of its centre, primarily due to rotational 
motion. However, the transverse motions of the vortices due to self- and mutual 
inductions complicate the (w) contours. Consider the (v) contours at  phases I and 
I1 in the major plane. Between the structures, the transverse velocities induced by 
the two vortices nearly cancel each other, causing a considerable decrease in the 
regions of both positive and negative (v) and their corresponding peak values. In 
phase 11, the inward motion of the trailing vortex (due to self- and mutual 
inductions) is strong enough to overshadow the outward fluid motion at its front 
(between the pair), producing a region of only negative {w). 

In both planes, (v) contours show that outward motion at the front is stronger 
than the inward motion at the back. Both positive and negative peaks of (v) 
contours are higher in the minor plane than in the major plane during initial stages 
of pairing (phases I-111), but during phases IV  and V the peak values are higher 
in the major plane. The areas encompassed by a constant negative (w) contour level, 
say (w) = -0.02, at  each phase (except for phase V) are larger in the minor plane 
than in the major plane. This indicates that during the initial stages of interaction, 
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X l D ,  

FIGURE 10. Convection velocities of vortices during pairing, 0,  Leading vortex (minor plane); 0 ,  
trailing vortex (minor plane) ; V, leading vortex (major plane) ; A, trailing vortex (major plane) ; 
-___ , trailing vortex (circular jet); ---, leading vortex (circular jet). 

the minor-axis side is more active in drawing in ambient fluid. In  this plane, as the 
trailing vortex rushes through the leading vortex, it pulls in a large amount of 
ambient fluid. I n  the major plane, the larger area encompassed by a constant positive 
contour level, say ( v )  = 0.02, indicates that a greater amount of jet fluid is ejected 
in this plane than in the minor plane. It appears that these two different kinds of 
interactions in the two planes associated with three-dimensional motions produce 
better mixing in elliptic jets than in circular jets. If one compares the two planes a t  
phase IV, it is clear that  motion induced by the vortices is indeed highly three- 
dimensional and defies simple explanation. 

4.2.2. Convection velocity 
The convection velocity v, of advecting structures, computed from ( u )  and ( v )  

values corresponding to  the vortex centres, is shown in figure 10. For comparison, 
vc/Ue distributions for the circular jet (reproduced from Zaman & Hussain 1980) are 
also included in this figure. Note that ( u )  is an order of magnitude higher than ( v )  
a t  the vortex centre (figures 8 and 9), indicating that v, is mostly longitudinal. 

In  the major plane, where vortices undergo pairing, the difference in v, of the 
leading and trailing vortices is much less than that in the circular jet. Clearly, pairing 
through entanglement does not allow a large difference in v,. In  contrast, in the 
circular jet, the vortices undergo a leapfrog motion that involves a large increase in 
v,  of the trailing vortex and a smaller decrease in v, of the leading vortex followed 
by a reversal in v, before merger. 

I n  the minor plane, the trailing vortex which rushes inside the leading one has a 
much higher v,  than that of the latter, somewhat similar to, but less than, that in the 
circular jet. Since the distance between the vortices in the minor plane a t  each phase 
(e.g. 0.40, at phase 11) is greater than that in the circular jet (e.g. 0.250 at phase 11), 
the mutual induction is less effective in the elliptic jet. This explains why the v, 
difference is smaller. It is worth noting that the merged vortex (in the major plane) 
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travels faster than in the circular jet by about 1@15 %. This is not surprising because 
the mutual induction across the jet axis is higher in the elliptic jet. In the minor 
plane, the trailing vortex continues to move faster than the shear-layer midplane 
velocity because of self-induction caused by higher curvature (figure 7 b ) .  

4.2.3. Velocity vector 

Unlike vorticity fields, velocity vector fields are not Galilean invariant, and 
therefore depend on the choice of the reference frame. To represent vector fields in 
a meaningful manner, a proper choice of the reference frame is necessary. For an 
isolated (i.e. non-interacting) vortex, a reference frame moving with the vortex 
centre is the proper choice. However, in a situation where vortices undergo pairing, 
the choice of a single reference frame is problematic because the interacting vortices 
advect at  different speeds (see figure 10). More complicated is the interpretation of 
the vector patterns. Of course, the flow details associated with one structure can be 
accentuated by using its centre as the reference frame. This will typically obliterate 
the motion associated with other structures. 

In the present study, various reference frames were tried : for example, that of the 
leading vortex, that of the trailing vortex, a frame moving at the average of the 
convection velocities of the two vortices, as well as a frame with velocity halfway 
between that of the two vortex centres. No choice is perfect. Not surprisingly, the 
most satisfactory results were obtained when the midpoint velocity was used as the 
reference frame velocity. Phase-averaged velocity vectors using this reference frame 
velocity are shown in figure 11 for the first four phases. In each figure, the vector 
directions are denoted by lines and the magnitudes by the line lengths. The 
corresponding vorticity contours ( ( w , ) / f  = 1, 3 and 5) are superimposed as dashed 
lines. 

A major advantage of the velocity vector field representation is that it gives a 
better physical perception of the instantaneous flow field than vorticity contours. It 
depicts relative movements of different parts of a structure or of interacting 
structures as well as engulfment and ejection of fluids. 

Since the advection speeds of the structures in the transverse direction are very 
small compared to those in the streamwise direction, the transverse components of 
the velocity vectors correctly depict the engulfment of ambient fluid at the back, and 
ejection of jet core fluid a t  the front of the xtructures. A few of these velocity vector 
plots clearly show the saddle regions (marked x) .  The saddles between the 
interacting structures at  phases 111 and IV in the minor plane are not clear because 
a single reference velocity cannot depict the flow field when the two structures are 
advecting at quite different velocities. The existence of longitudinal vortices (ribs) in 
the saddle regions, and their roles in turbulence production and entrainment have 
been discussed previously (Hussain 1984, 1986). 

4.3. Incoherent turbulence stresses and coherent production 
The mechanisms of turbulence production and small-scale mixing are central to 
turbulence physics, but are poorly understood. The coherent structure approach 
to turbulence has provided some understanding of the turbulence production 
mechanism. In this section we will examine the incoherent normal and shear stresses, 
their contributions to coherent production, and the associated mechanisms. In  the 
present study, since we have examined the properties in a plane only, the 
productions due to incoherent normal stresses (u,") and <w,"), and incoherent 
Reynolds stress (u, wr) are examined. 
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4.3.1. Incoherent normal stresses 
Figures 12 and 13 show contours of the phase-average incoherent turbulence 

intensities (u:)+/U, and (v,">;/U,. The distributions of these two are similar. At all 
the phases the peaks of incoherent turbulence occur near the coherent structure 
centre. However, there are some differences regarding contour boundary and levels. 
For example, up to phase 111, ( u ; ) ~ / l u ,  has a higher peak value in the major plane 
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FIGURE 12. Contours of incoherent longitudinal turbulence intensity <u:$/Ue. 

than in the minor plane, while the higher peak value of (v;)'/U, occurs in the minor 
plane. However, peak values of ( e , )  = ((u:) + (v,")) in both planes are nearly equal 
(not shown). For example, a t  phase 11, the peak values of ( e , ) /U2 ,  are approximately 
0.057 and 0.054 in the major and minor planes respectively. In the circular jet, the 
peak value of <v$ is higher than that of (u$; this is similar to that in the minor 
plane of the elliptic jet where the structures undergo leapfrog motion (during the first 
three phases) as in the circular jet. 

It is now well recognized that large-scale spanwise coherent structures in shear 
flows are connected by a spanwise array of nearly longitudinal vortices of alternating 
signs, known as ribs (Hussain 1984; Bernal & Roshko 1986; Jimenez, Cogollos & 
Bernal 1985). The interactions of ribs and spanwise coherent structures (rolls) play 
a crucial role in the production of incoherent turbulence. Turbulence produced by the 
stretching of ribs is advected towards the centre of the rolls, resulting in peak values 
of incoherent turbulence intensities near the roll centre. Incoherent turbulence 
intensity data in jets (Hussain & Zaman 1980) and wakes (Cantwell &, Coles 1983) 
show that (v:)i peaks are higher than (u$ peaks after the formation of structures; 
peak values of (u:); increase in x and finally exceed (v,")i peak values. These data 
suggest that during the initial stages of vortex roll-up and pairing, the rib-roll 
interactions produce turbulence predominantly in the transverse direction ; (u,"); is 
produced at a later stage. A higher peak in (u$ in the major plane, even at  phase 



462 H .  S.  Husain and F .  Hussain 

Minor plane 
I I I I I I 
Major plane 

1.2 1.5 

1 .o 1.5 2.0 0.8 1.2 1.6 

1.5 1.2 I I I I I ' 
phase I1 

~ 

- 0.8 
- Y 
De 

0.4 

0 
2.4 

0 
1.2 1.6 2.0 2.4 1.2 1.6 2.0 

0.5 

1.5 

I I ,  I 
phase IV ' 

2.0 2.5 3.0 1.5 2.0 2.5 3.0 3. 

1.2 

0.8 

0.4 

0 
5 

XlD, 

FIIXJRE 13. Contours of incoherent transverse turbulence intensity (v,");/U,. 

I, suggests that transition occurred earlier in this plane. The role of ribs in the 
turbulence production mechanism is discussed further in 54.3.3. 

Incoherent turbulence can also arise from two sources other than ribs. The first 
is jitter; variations in structure shape, size, orientation and strength may cause 
improper alignment of structures. However, the present study of near-field structures 
under excitation should be free from significant jitter. The second cause may be fine- 
scale turbulence superimposed on the spanwise rolls. In the transitional region, one 
would expect that this contribution to incoherent turbulence is much smaller than 
that of the ribs. 

While the interaction of ribs and rolls of orthogonal vorticities produces fine-scale 
three-dimensional turbulence, the details of their interaction, the topology of the 
rib-roll connection, and the winding of the rib within the roll is poorly understood. 
This area is the focus of further research in our laboratory. 

4.3.2. Incoherent and coherent Reynolds stresses 
The contours of incoherent Reynolds stress <urv,>/U2, (figure 14) show that the 

peak value occurs near the saddles of (w,> contours. Similar spatial correspondence 
between the peaks of (w,> and (u,v,> has been observed in other flow situations, 
namely circular jets (Hussain & Zaman 1980), wakes (Cantwell & Coles 1983; 
Hayakawa & Hussain 1985, 1987) and mixing layers (Metcalfe et al. 1987). We 
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FIGURE 14. Contours of incoherent Reynolds stress ( u r v r ) / q .  

believe that (u, w,) is predominantly controlled by the ribs and their interaction with 
the rolls. By refining the eduction scheme, incoherent turbulence arising from jitter 
effects and its contribution to (u, w,} can be reduced significantly. The contribution 
of superimposed fine-scale turbulence to (u, w,) should be zero. Thus the ribs are the 
main source of incoherent Reynolds stress generation. 

Ribs can be viewed as substructures which are characterized by phase-correlated 
vorticity fields normal to the rolls. Since the connections of ribs to rolls are not 
precisely fixed in the spanwise direction, the associated smaller-scale velocity 
fluctuations appear incoherent with respect to the educed rolls. Spatial cor- 
respondence between (u, v,) (both positive and negative) and coherent vorticity 
( w , )  are direct consequences of the topology of ribs and rolls and their interactions. 
The orientation of ribs, both in the saddle region and the region where they connect 
the rolls, determines the domains of positive and negative (u, w,). 

Velocity fields associated with ribs oriented at angles a < 90' and a > 90' to the 
x-axis are shown schematically in figure 15(a).  For a < go', the rotational velocity 
around a rib will contribute either ( + u, - w) or ( - u, + w) in a spanwise measurement 
plane. In either case the value of (u, w,) will be negative. When a > 90°, contributions 
are either (+u,  +w) or ( -u,  -w), giving rise to a positive value of (u,~,).  The 
dependence of the sign of the (u, v,) distribution on the orientation of ribs is shown 
schematically in figure 15 (b ,  c) for a single vortex (e.g. phase IV  in the major plane) 
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FIQURE 15. (a )  Schematics showing the mechanism of positive and negative (u,v,) generation. (b ,  c) 
Schematics showing the regions of positive and negative (u, v,). (d )  Contours of coherent Reynolds 
stress (u,v,)/v;4. 
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FIGURE 16(a). For caption see page 467. 

or for pairing vortices (e.g. phase I1 in the minor plane). This simple explanation is 
in qualitative agreement with the measured positive and negative (u, w,) 
distributions. 

The peak value of (u, w,) is higher in the major than the minor plane. Because of 
stronger self-induction in the major plane, the distances between the leading and 
trailing vortices in this plane a t  phases I and I1 are longer by about 40 % and 17 % 
respectively than those in the minor plane. That is, the ribs in the major plane 
undergo higher stretching, producing higher peak values of (u,v,). After the 
completion of pairing in the major plane (phase IV), (u,v,) distributions show larger 
regions of positive (u,w,) in the first and third quadrants around the structure 
centre, and smaller regions of negative (u, w,) in the second and fourth quadrants, 
consistent with the conceptual schematic shown in figure 15(b). 

We need to consider transport of momentum that causes both incoherent and 
coherent Reynolds stresses. Contours of coherent Reynolds stress (up up) are shown 
in figure 15(d) for phase I1 only. These contours show alternate regions of positive 
and negative values. During phases I to IV, peak values of (upvp) are greater than 
the corresponding (u, w,) values in both planes. This indicates that, during the initial 
stages of the interaction, large-scale transport by coherent structures dominates the 
flow dynamics. Even when (upvup) is larger, the time average may not be large 
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because of the alternate signs in (up  wp). At phase V, values of (u,  w,) and (up  wp) are 
found to  be comparable, indicating that with increasing distance coherent and 
incoherent motions become equally significant in the transport of momentum. 

4.3.3. Coherent turbulence production 

The shear and normal production terms, 

(4) ( - ( u r w r )  (a (v>/ax+Ku) /ay) )  

(P,> (= - (u,") a<u>/ax- (V,") a(v)/?Y), and 

are dependent on the coordinate system chosen while the total production 
( P )  ( = (P,) + (P,)) is invariant under rotation of the axes, and is therefore a more 
meaningful quantity. However, a detailed study of the distributions of turbulence 
production terms (P,) and (P,) = (P,,) + (P,,,) (where (P,,) = - (u:) a(u) /ax  and 
(P,,) = - (v:) a(v)/ay) in an appropriate coordinate system is very helpful in 
understanding the physical mechanism of production in turbulent shear flows. Here 
we discuss these measures in the Cartesian ( x ,  y) and ( x ,  z )  coordinates. 

Contours of (P,), (P,) and (P) are shown in figure 16(a-c). Since both incoherent 
Reynolds stress (u, w,) and coherent strain rate (8) (not shown) have their maxima 
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in the saddle regions, the peak of shear production (P,) necessarily occurs there. (P,) 
contours are quite different from (P,) contours : peaks in (P,) distributions occur not 
in the saddle region, but near the structure boundary. A comparison between 
production contours in the major and minor planes shows that peak values of (P,) 
are about 4 times higher in the major plane, while the peak values of (P,) are about 
2 times higher in the minor plane, resulting in comparable peak values of the total 
production (P>  in both planes. Furthermore, most of the negative production arises 
from normal stresses. 

A notable observation from these data is that normal and shear productions are 
comparable in their peak values, even though the net contribution of (P,) to an area 
average is considerably lower because of cancellation between positive- and negative- 
valued regions. Coherent-structure studies in the far field of jets (Tso 1983), wakes 
(Hayakawa & Hussain 1985, 1987) and mixing layers (Metcalfe et al. 1987; 
(Hayakawa & Hussain 1985, 1987) and mixing layers (Metcalfe et al. 1987; 
most heavily to (P). The apparent disagreement between those studies and the 
present one can be reconciled by examining the effects of curvature of vortical 
structures on the terms contributing to normal production. In  cylindrical coordinates 
(figure 17a),  the shear and normal productions, in comparison with the case in 
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Rib 

Rib 

FIGURE 17. (a) Schematic of a ring vortex and cylindrical coordinates. Qualitative contours of: ( b )  
( w , ) ;  (c) (w>; ( d )  a(u)/az; (e) a(w)/ay for a two-dimensional roller structure. (f) Qualitative 
contours of a(u)/ax,  showing the effects of structure curvature. 



Elliptic jets.  Part 2 469 

Y 

' t  

Y 

-0.05 
\ 

FIGURE 18. Numerical results for a circular jet showing contours of: (a) a(u)/ax; ( b )  a(v)/ay; (c) 
(v)/y. Solid and dashed lines are contours of positive and negative values respectively; ---, 
vorticity contours. 

rectangular coordinates, have two additional terms : (u,v:)/2y and (v,v:)/2y. The 
experiments were performed in a Cartesian frame of reference; only later did we 
realize that a cylindrical coordinate system was more appropriate and that these two 
terms had not been measured. However, several arguments may be put forth to 
justify that the contributions of these two terms to (P,) are negligible, and here we 
only consider the more significant terms (P,), (P,,) and (P,,). 

If the spatial distributions of (ui) and (v:) are very similar to each other, the 
normal production term can be written as 

By continuity, the first term on the far right-hand side vanishes, while the magnitude 
of the second term depends on the radius of curvature of the vortical structures. 
Thus, in a plane mixing layer and a plane wake, or in the far field of a circular jet, 
where the radius of the curvature is large, the contribution of (P,) becomes 
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negligible. However, in the near fields of elliptic and circular jets, the (v)/y 
contribution to (P,) can be significant, resulting in positive (P,) in the region of 
positive <v) and negative (P,) in the region of negative (v). Of course, the 
distributions of (uf) and (vf) are not exactly the same, and therefore their 
differences also contribute to (P,), but these differences are found to be small in 
situations where structure interaction is minimal, as in the studies cited above. 

Mechanism of turbulence production In the following, we examine the mechanism 
of turbulence production due to the interaction of the coherent strain field and 
incoherent turbulence. Let us consider the azimuthal cross-section of a vortical 
structure. In this plane, if one rotates the ( x ,  y)-axes, the values of (P,), (P,,) and 
(P,,) are redistributed among themselves such that the total production ( P )  
remains invariant. By aligning the axes at a braid (vortex sheet between vortical 
structures) such that the new coordinates (x,,y,) are aligned with the diverging 
separatrix (where the straining motion a(u,)/ay, = a(vl)/ax1 = 0) ,  the total 
production ( P )  can be made equal to (P,) in the braid. This suggests that the 
physical mechanism of production is that of vortex stretching aligned in that 
direction. Guided by coherent production data, Hussain (1984) suggested that the 
saddle region is not a two-dimensional continuous sheet but consists of slender 
discrete vortices (ribs) aligned with the diverging separatrix. This conjecture found 
support in the low-Re transitional pictures of Bernal & Roshko (1986) and in direct 
simulation of turbulent flows (Hussain 1986). The interaction of ribs and rolls causes 
continual stretching of the ribs, resulting in the production of turbulence. In the 
usual streamwise, transverse and spanwise (2, y, z )  coordinate system, (P,) is the 
greatest contributor to the total production in the saddle region due to the stretching 
of the rib vorticity. The (P,) contours confirm that most of the turbulence produced 
by incoherent Reynolds stress occurs near the saddles. 

Eflects of structure curvature on normal production The mechanism of turbulence 
production by normal stresses and the effects of curvature of the roll are examined 
next. Let us first consider the cross-section of a two-dimensional roller structure, 
whose distributions of (w,) ,  (v), a(u)/ax and a(v)/ay are shown qualitatively in 
figure 17(b-e) .  In these fighres, vortex centres are marked '+', and positive and 
negative contours of a(u)/i$x and a(v)/ay are denoted by solid and dashed lines 
respectively. As ribs wrap around rolls, they undergo stretching or compression 
depending upon the sign of strain rates a(u) /ax  and a(v)/ay. The positive strain rate 
a(u) /ax  causes stretching of the ribs in the streamwise direction, augmenting mostly 
v- and w-fluctuations associated with the ribs. (This is also apparent from the 
definition of (P,,), because (P,,) = - (vf) a(v)/ay = (vf) a(u)/ax.) Similarly, 
the strain rate a(v)/ay augments u- and w-fluctuations by stretching the ribs in the 
transverse direction. However, in the case of two-dimensional roller structures, the 
total contribution to  (P,) is very small because stretching of a rib by a(u ) /ax  at a 
given location is associated with the same amount of compression by a(v)/ay, and 
vice versa. 

For a curved roller structure, tangential velocity must increase on the inner (high- 
speed) side and decrease on the outer (low-speed) side to accommodate the same flow 

FIGURE 19. (a )  Qualitative contours of interacting vortices at phase 11: (a )  superposition of 
-a(u)/ax of vortex 1 and vortex 2; ( b )  -a(u)/ar; ( e )  (u:); (d) (P,,); (e) superposition of 
-a(v)/ay of vortex 1 and vortex 2;  (f) -a(v)/ay; (9)  (v:); (h )  (P,,). Schematics showing how 
rib-roll interaction produce regions of: ( i )  (P,,);  (j) (P,,). (k) Contours of the normal production 
term ( P , , ) / ( q f ) ;  phase 11, minor plane. ( I )  Contours of the normal production term (P , , ) /  
(qf) ; phase 11, minor plane. 
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between two radial planes crossing the vortex (see figure 17a). That is, the 
streamwise flow undergoes a larger acceleration and deceleration on the inner side 
than on the outer side. This is also evident from the equation of continuity in 
cylindrical coordinates. Because of the term (v)/y, the strain rate a(u)/ax acquires 
higher peak values on the inner side of the structure than on the outer side. Contours 
of a(u)/ax for a curved roller structure are shown qualitatively in figure 17(  f ). Such 
a strain rate field produces higher stretching and compression of the ribs on the inner 
side of a curved vortical structure than those on the outer side. (In figure 17 (f ), an 
approximate rib-roll configuration is also superimposed for reference.) Preliminary 
studies of a circular jet using direct numerical simulation (M. V. Melander 1990, 
private communication) show clearly the effects of curvature on the distribution of 
a(u)/ax. Distributions of a(u)/ax, a(v)/ay and (v)/y obtained in this simulation are 
shown in figure 18 (a-c).  In  these figures, a few contours of ( w , )  are superimposed for 
common reference. Contours of a(v)/ay show a clover-leaf distribution with 
alternating positive and negative regions with little difference in their peak 
magnitudes. Because (v)/y is non-zero, contours of a(u)/ax show a higher peak 
value on the inner than on the outer side. 

As a representative case, let us next examine the strain rate fields of interacting 
structures a t  phase I1 in the minor plane of the elliptic jet. This is deduced by 
superposing the strain field (in figure 17 f )  for two vortical structures. Qualitative 
contours of -a(u)/ax of individual structures and their resultant are shown in 
figure 19(a, b ) .  Qualitative contours of (u,") (similar to figure 12) and 
(P,,) = -(u:>a(u)/ax are shown in figure 19(c, d ) .  Similar contours for -a(v>/ax, 
(v:) and (P,,) are shown in figure 19(e-h). Note that the deduced contours of (P,,) 
and (P,,) show significant differences. Contours of (P,,) (figure 19d) show one 
dominant positive region (marked Al)  on the downstream side and two negative 
regions (marked N2 and N3) on the upstream side of the structures, while (P,,) 
contours (figure 19h) show a clover-leaf distribution with alternating positive and 
negative regions around each structure centre (marked A4, A6, N4, N6 and A5, 
A7, N5, N7). Considering such strain fields and the regions where the ribs join the 
rolls, the regions of (P,,) and (P,,) are shown schematically in figure 19(i,j), 
respectively. I n  figure 19 (i), the ribs in the interacting regions labelled A1 and A2 are 
stretched in the y-direction resulting in positive (P,,) ,  while compression of the ribs 
in regions N2 and N3 produces negative (P,,). In  the interacting regions labelled A4 
and A7 (figure 19j), the ribs are stretched in the x-direction, resulting in positive 
(P,,);  compression of the ribs in regions N4, N5, N6 and N7 produces negative 
(P,,,). Furthermore, as the structure & moves in the x-direction from phase I to 
phase 111, the section of the rib connecting the vortices 4 and (denoted by N) is 
compressed. This region is thus characterized by negative values of (P,,) and (P,,). 
Experimentally obtained distributions of (P,,) and (P,,) (figure 19k, 1)  are fairly 
similar to the inferred distributions (figure 19d, h, i , j ) .  For example, note the 
similarity of (P,,> distributions in regions marked A1, A2, N2 and N3 in figure 
19(d, i, k), and distributions of (P,,) in regions A4, A7, N4, N5, N6 and N7 in figure 
19(h,j, 1 ) .  There are a few dissimilarities also; for example, regions A3 and N1 in 
figure 19(d), and regions A5 in figure 19(h) are not present in figure 19(k, 1) .  These 
differences between the inferred results using simple structure configuration and the 
experimentally obtained results are not unexpected ; in reality structures are three- 
dimensional and their interactions produce more complex strain fields. Furthermore, 
three-dimensional motions resulting from the winding of ribs around rolls produce 
complex distributions of (P,,) and (P,,). 
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FIGURE 20. Contours of (e)/q f ), (Pn)/q f) and ( P ) / q  f )  during pairing in the circular jet. 

Circular jet For comparison with the elliptic jet, contours of (P,) ,  (P,) and ( P )  
of the circular jets are shown in figure 20 for three phases (corresponding to  the (w , )  
contours shown in figure 3b). These contour patterns are qualitatively similar to 
elliptic structures in the minor plane. However, there are some differences, especially 
in the later phases. For example, unlike the elliptic jet, the circular jet shows: (a) 
regions of negative (P,) in phase IV ; ( b )  higher peak values of (P,)  in the first two 
phases of the circular jet; and ( c )  the absence of positive (P,) near the bottom side 
of the trailing vortex of the circular jet (phase 11), where the upstream rib joins with 
the roll. These differences are not unexpected because of the deformation of 
structures and the larger distance between the interacting structures in the minor 
plane of the elliptic jet. 

Peak levels of incoherent turbulence intensities in elliptic and circular jets are 
almost the same. However, a larger domain of the coherent structure cross-section, 
associated with incoherent turbulence intensities and net positive region of total 
production ( P ) ,  indicate that total turbulence production over the extent of the 
structure cross-section is greater in the elliptic jet than in the circular jet in all 
phases. 

4.4. Time-average characteristics 
Although time-average measures of various turbulence properties cannot address the 
detailed physics of turbulent flows, these measures are important in technological 
applications. These may be particularly important here because stable pairing 
enhances mixing. Furthermore, they serve as a data base for validation of turbulence 
models and direct numerical simulations. Since time-average measures are the 
integrated footprint of advecting organized structures, one should expect that  the 
spatial distributions of these measures can be explained, though not necessarily 
completely, in terms of coherent structures and their interactions. The motivation 
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FIQURE 21. (a) Contours of U / U ,  of the excited (-) (St, = 0.85) and unexcited (----) 
elliptic jets. ( b )  Contours of U / U ,  of the excited (St,, = 0.85) and unexcited elliptic jets. 

for this section is to investigate how the time-average measures are modified by 
stable pairing and to examine them in terms of coherent structures. 

4.4.1. Longitudinal velocity 
Contours of longitudinal mean velocity U,  non-dimensionalized by both local 

centreline mean velocity U, and exit velocity U, are shown in figure 21 (a, b )  
respectively. The contours of U/U,illustrate that excitation at St,, = 0.85 causes the 
outer boundary of the jet (e.g. the U / U ,  = 0.1 line) to  be pushed outward in both the 
major and minor planes with respect to the unexcited state. The inner boundary of 
the mixing layer (e.g. the U/U,  = 0.9 line) is pushed outward everywhere in the 
minor plane, while in the major plane it is pushed initially towards the centreline for 
x/D,  < 5 but outward farther downstream. The shift in the inner boundary due to 
excitation is not as significant as for the outer boundary. (Note that the contour 
U / U ,  = 0.5 represents the conventional jet half-width.) These contours demonstrate 
enhanced spreading of the jet by the excitation. For example, the shear-layer 
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FIGURE 22. Contours of V/U,  of the excited (StD, = 0.85) and unexcited elliptic jets. 

thickness at x/De = 5 is increased by about 50% in the major plane and by about 
20% in the minor plane. The inward and outward inclinations of U / U ,  contours in 
both planes are consistent with the vortex trajectories shown in figure 6(a ) .  In the 
major plane, the motion of the vortices towards the jet axis produces inward 
inclinations of the higher-level U/U,  contours, while outward motion of the leading 
vortex produces outward shifts of the U/U,  lines in the minor plane. Excitation 
causes humps in the U/U,  contours at x/De x 2.5 in the minor plane where the 
trailing vortex rushes inside the leading one. 

Since the centreline velocity U, decreases beyond the potential core of the jet, 
V / U ,  contours do not show the effect of excitation on the shortening of the potential 
core. This effect as well as the increase in the shear-layer width by excitation is more 
clearly apparent in the U/Ue contours (figure 21b). Note that the location where the 
U/Ue = 0.95 line intersects the jet axis has moved from x/De = 5 to 2 owing to the 
excitation ; excitation considerably shortens the potential core. 

The thickening of the shear layer by excitation is more pronounced in the major 
than in the minor plane. It was mentioned in $4.1 that, although the vortex cores in 
the major plane advect towards the jet axis due to self-induction, these vortices leave 
behind low-vorticity fluid, which diffuses into ambient fluid before being entrained, 
causing the shear layer to grow further in the outer region. In the minor plane, the 
fact that the leading vortex moves almost monotonically away from the jet axis (see 
vortex trajectories ; figure 6a) causes a continuous spreading of the low-level contour 
(U/Ue = 0.1). The higher-level U/Ue contours are influenced mostly by the 
acceleration and deceleration of the trailing vortex, producing a hump (for example, 
see the 0.6 contour). 

4.4.2. Transverse velocity 
For the unexcited jet, the V/Ue contours (figure 22) in the major plane show a large 

region of low negative values (denoted by dashed lines), while in the minor plane all 
of the contours are positive; the peak value of V / U e  is about 6 times higher in the 

16 FLM 233 



476 H .  S. Husain and F .  Hussain 

Major plane Minor plane 
2 3 

2 

1 

1 

- 2 0  o x  
D. 2 3 D .  

2 

1 

0 
5 10 15 0 5 10 15 

XlD, 

FIGURE 23. Contours of u'/U, of the excited (St, = 0.85) and unexcited elliptic jets. 

minor plane. Excitation modifies V/U, contours drastically in both planes. Note that 
V becomes positive everywhere in the major plane. 

The mean V-field is the result of the superposition of the self-induced motion of 
vortical structures and the rotational motion within the structures. In the unexcited 
state, pairing occurs intermittently and the pairing location is not fixed in space. 
Furthermore, the core vorticity is not as concentrated in the unexcited case as in the 
excited jet. As a result, one would expect a lower level of V in the unexcited jet. In 
the major plane, since the vortices move towards the jet axis by self-induction, the 
positive-v region in front of the structures is further diluted, while the negative-v 
region at  the back becomes accentuated. Thus the dominance of the negative-v field 
associated with advecting structures results in only negative time-average values of 
V.  Conversely, as the structures in the minor plane move away from the jet axis, they 
contribute to positive V in this plane. 

Under excitation, stronger ejection in front of interacting structures seems to 
dominate inward ingestion, producing only a positive-V region in the major plane. 
This is apparent from distributions of (v) (figure 9). The peak values and the area 
enclosed are higher for positive (v) contours than for negative (v) contours. Inward 
motion of the core region, however, decreases the values of positive V.  This motion 
causes a valley in the V-distribution (shown by hatched lines in figure 22), but is not 
strong enough to produce negative V .  In the minor plane, excitation increases the 
peak value of V by a factor of about two. Closer to  the jet axis, a small negative 
region of V appears where the trailing vortex rushes through the leading vortex, 
producing stronger inward motion behind it. 

4.4.3. Turbulence intensities 
Figure 23 shows that, for the unexcited jet, the longitudinal turbulence intensity 

(u f /Ue)  distributions have a single peak in each plane. This is because the formation 
and breakdown of structures are not localized in space. Since these events are 
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FIGURE 24. Contours of v’/Ue of the excited (St,, = 0.85) and unexcited elliptic jets. 

spatially localized by the excitation, u‘/Ue contours show two peak regions in the 
shear layer; the first peak (closer to the jet exit) in both planes corresponds to 
structure roll-up. The second peak in the major plane corresponds to the breakdown 
of paired vortices. In  the minor plane, the second peak is due to the breakdown of 
leading vortices. Note that the contours have a valley near the jet axis. Downstream 
of the valley, the contour levels increase and then decrease. Along the jet axis, the 
first peak in u‘/Ue is primarily induced by the accelerating trailing vortices as they 
rush through the leading ones. The valley corresponds to the deceleration phase of 
the trailing vortices and the peak region downstream of the valley is due to 
breakdown of the trailing vortices. 

Like u’/Ue, the d / U e  contours in the unexcited jet (figure 24) show a single peak 
in each plane for the same reason mentioned above. Under excitation, v‘/Ue contours 
also show two peaks in the shear layers of both planes, and a valley (shown hatched) 
in the minor plane. However, the contour details of v’/Ue are quite different from 
those of u’/Ue, especially near the jet axis. The valley in the v’ distributions is 
transversely away from the jet axis, and downstream of the valley there is another 
peak (i.e. a third peak) in the minor plane. The first peak in u’ along the jet axis 
(z /D,  x 2.5) is mostly due to the induced motion up = ( (u )  - U) because large up 
variations occur on the jet axis also. On the other hand, the positive and negative 
peak values of up = ((v)- V )  occur upstream and downstream of advecting 
structures, and away from the jet axis (see figure 9 ;  distributions of up and (v) are 
similar because of very low values of V ) ,  causing the peak and valley of v‘/Ue to occur 
away from the jet axis. Because the up distribution is symmetric about the jet axis 
and is zero along the jet axis, the v’ distribution shows a lower peak value than does 
the u‘ distribution dong the jet axis. This is consistent with data in jets of other 
geometries, e.g. circular (Wygnanski & Fielder 1969), planar (Gutmark &, Wygnanski 
1976) and rectangular (Krothapalli, Baganoff &, Karamcheti 1981). 

16-2 
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FIGURE 25. Contours of TiV/e of the excited (St,, = 0.85) and unexcited elliptic jets. 

4.4.4. Reynolds stress 
Figure 25 shows that excitation produces regions of negative Reynolds stress in 

both planes. The appearance of the negative m close to the exit plane is quite evident 
from the phase-average measures of (u, v,) and (upvp) (figures 14 and 15 d), since the 
time-average Reynolds stress is equal to the average of coherent Reynolds stress 
(uv) ( = (u, v,) + (up v,)) over all phases. Excitation increases the positive peak of ED 
by about 60% in both of the planes. A comparison of (u,v,) and (u v ) contours 
shows that most of the negative correlation is associated with (upvp) (1.e. due to the 
large-scale motion of structures) during initial phases of pairing. Positive correlation 
occurs at the structure front where the jet fluid is ejected away from the jet axis while 
negative correlation occurs at  the back of the structures where the ambient fluid is 
drawn inward. At  phases when the trailing vortex moves inside the leading vortex, 
the region of negative correlation is more dominant than the region of positive 
correlation. Thus, under excitation, when pairing events are stabilized to occur at  a 
particular spatial location, the time-average Reynolds stress also shows a region of 
negative correlation. Farther downstream, say x/D,  2 4, as the correlation of 
coherent motion (i.e. (upvp)) decreases, the weak negative regions of (upvp) are 
overshadowed by the positive regions of (upvp> and (u,v,), giving rise to only 
positive time-average m contours. In unexcited jets, when the interaction phases 
which give rise to negative correlation occur randomly in space and time, contours 
of m do not show negative regions because of dominance of positive regions of 

9 p  

(up Vp) and (u, v,). 

4.4.5. Turbulence production 
Contours of time-average shear production P,, normal production P, and total 

production P are shown in figure 26 (a+). In the unexcited case, since the strain rates 
aU/ay and aU/ax are much stronger than aV/ax and aV/ay, mean turbulence 
production due to shear and normal stresses is predominantly contributed by the 
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FIGURE 26(a ,b) .  For caption see page 480. 

gradients of U. The shear production is dominated by aU/ay, which is negative in 
both planes, resulting in regions of only positive shear production. Note that most 
negative production is generated by normal stresses. 

Excitation has a significant effect on the production contours. Regions of negative 
P, develop in both planes. As to be expected, the negative P, is much more 
dominant in the minor plane because of large countergradient transport of 
momentum during the phase when the trailing vortex passes through the leading 
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FIQURE 26. Contours of time-average turbulence production in excited (st, = 0.85) and unexcited 
elliptic jets: (a) shear production; ( b )  normal production ; (c) total production. 

one. In  the unexcited case, the contribution of shear production is much higher than 
normal production (almost an order of magnitude), but excitation significantly 
increases the contribution of normal production. 

Because of the dominance of positive values of P, and P, in the major plane of both 
excited and unexcited cases, the total production P in this plane is only positive. In  
the excited case, the distributions of P in both planes are also evident from the phase- 
average ( P )  contours. Large regions of positive ( P )  in the major plane result in only 
positive regions of P ,  while the dominance of both positive and negative regions of 
( P )  is reflected in the time-average P .  

5. Concluding remarks 
Three-dimensional deformation, intrinsic to elliptic vortices because of their 

curvature-dependent self-induction, makes pairing in an elliptic jet more complicated 
than in a circular jet. Unlike circular jets, where pairing is nearly uniform around the 
entire perimeter of the vortices, pairing in elliptic jets occurs only on the major-axis 
sides. A large separation of interacting vortices in the minor plane hinders pairing ; 
the trailing vortex, instead of pairing, rushes through the leading vortex and 
subsequently breaks down. 

Since pairing takes place along a short segment in the major-axis side only, 
morphologically speaking, pairing does not occur through a leapfrog motion as in 
circular jets; rather i t  is better described as an entanglement process. In  post- 
transition and fully developed turbulent states of various shear flows, where the 
vortical structures are predominantly three-dimensional, merger through entangle- 
ment is likely to  be a common mode of vortex interaction. Other important modes 
of interactions are merger of opposite-signed vortices and the cut-and-connect 
interaction (which we have discussed elsewhere). By controlling the deformation and 



Elliptic j e t s .  P a r t  2 48 1 

interaction of three-dimensional vortical structures in the elliptic jet, we can 
investigate this important mode of interaction in detail. It is quite reasonable to infer 
from the geometry of vortex pairing that compared to leapfrogging processes, an 
entanglement process causes greater stretching of interacting vortices, producing 
greater enstrophy production and vorticity diffusion. Three-dimensional deformation 
of vortical structures and the resulting pairing through entanglement in the major 
plane and violent breakdown in the minor plane should produce better mixing in 
elliptic jets than in circular jets. This is evident from the coherent vorticity contours 
which show that vorticity is diffused over a larger area (almost twice) in elliptic jets 
than in circular jets. 

In  the present study, although we have not educed rib substructures, the dynamics 
and importance of ribs in the turbulence production mechanism have been inferred 
from the detailed measurements of turbulence production due to incoherent normal 
and Reynolds stresses. Prior studies of coherent structures in plane wakes and 
mixing layers, and the far field of circular jets have revealed that coherent 
production due to incoherent normal stresses is negligible compared to  production 
due to  incoherent Reynolds stress. However, in the near fields of elliptic and circular 
jets, where structure curvature is strong, curvature plays an important role in the 
production of turbulence by normal stresses. 

The authors are grateful to  Dr James Bridges for a careful review of the 
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